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Abstract. Using the tomographic probability distribution (symplectic tomogram) describing the quantum
state (instead of the wave function or density matrix) and properties of recently introduced tomographic
entropy associated with the probability distribution, the new uncertainty relation for the tomographic
entropy is obtained. Examples of the entropic uncertainty relation for squeezed states and solitons of the

Bose-Einstein condensate are considered.

PACS. 42.50.-p Quantum optics — 42.50.Dv Nonclassical states of the electromagnetic field, including
entangled photon states; quantum state engineering and measurements — 03.67.-a Quantum information

1 Introduction

Quantum mechanics is known to differ from classical me-
chanics due to the existence of the position-momentum
uncertainty relation by Heisenberg [1,2]. The uncertainty
relation containing the correlation of the position and
momentum was found by Robertson [3] and Schrédinger
[4-6]. There exists the uncertainty relation of the position
and momentum for mixed quantum states [7]. New kinds
of the uncertainty relations were obtained by Trifonov [8].
Extensions of the uncertainty relations of [9] for mixed
states were found by Karelin [10]. Review of the uncer-
tainty relations in quantum mechanics is given in [11,12].

There exist specific uncertainty relations called “en-
tropic uncertainty relations” based on the notion of
Shannon entropy and information [13]. These relations,
which read as inequalities for entropy associated with the
position-and-momentum probability distributions, were
discussed, for example, in [14,15].

Recently a new formulation of quantum mechanics
where the quantum states are described by tomographic-
probability distributions (instead of the wave function
or density matrices) was suggested [16]. For a system
with continuous degrees of freedom, such probability is
the symplectic tomogram of the quantum state [17]. The
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corresponding symplectic tomographic entropy was intro-
duced for quantum states in [18] and in signal analysis
in [19]. In [20] the symplectic entropy was discussed for
the BEC solitons, in view of the tomogram of the solu-
tion to Gross-Pitaevskii equation. A general approach to
quantum information including the application of different
kinds of tomographic entropies was developed in [21].

The aim of this study is to establish a new kind of
entropic uncertainty relations formulated as inequality for
the entropy associated with the symplectic tomogram of
the quantum state of a system with continuous degrees of
freedom.

The paper is organized as follows.

In Section 2, a review of known entropic uncertainty re-
lations for systems with continuous variables is presented
while, in Section 3, the symplectic-tomography approach
is discussed. Entropic inequalities for symplectic entropy
are studied in Section 4 and examples of new inequali-
ties for the Gaussian packets (squeezed states) and soliton
solution of Gross-Pitaevskii equation (Bose-Einstein con-
densates) are given in Section 5. Finally, conclusions are
summarized in Section 6.

2 Entropy and entropic uncertainty relations

In the context of information theory, entropy is related
to an arbitrary probability-distribution function [13]. For
example, given the probability distribution P(n), where n
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is a discrete random variable, i.e.,
P(n) >0, (1)

together with the normalization condition
> P(n) =1,
n

one has, by definition, the entropy

S = —ZP(n) In P(n) = —(In P(n)).

(2)

(3)

In quantum mechanics, the discrete probability distri-
butions are standard ingredients in the description of
spin (see, e.g., tomographic probability of spin states in
[22,23] and related entropy for spin tomograms in [24]).

For continuous variables, the wave function ¢ (z) pro-
vides the probability-distribution density

P(z) = [th(2).

The corresponding entropy reads (see, e.g., [7])

(4)

S, = [ 16(@)P lnf(z)? do )
In the momentum representation, one has the wave func-
tion

1 .
= — x)e P dx h=1). 6
9 = —= [ viw) (h=1.  ©
The corresponding entropy related to the momentum-
probability density [)(p)|? reads

S, == [ WGP wldw) dp @
It is worthy noting that one can construct entropies S,
and S, not only in quantum mechanics. If the function
¥(x) is replaced by a signal function f(¢) depending on
time ¢, the function 4 (p) is replaced by the function f(w)
describing the signal spectrum.

In this case, the entropy of the signal

5=~ [ 1P ) d ®)

and its spectrum

S == [ 1F@)Pn|flw)? do )

provide some information characteristics of the signal.
From mathematical point of view, there exists the cor-

relation of entropies S, and S, (S; and S,,,), since the func-

tion ¢ (x) [f(t)] determines the Fourier component 1(p)

[f(w)]. This means that the entropies S, and S, have to
obey some constrains. These constrains are entropic un-
certainty relations (some inequalities).
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For the one-mode system, the inequality reads (see [7])

Sz +Sp > In(me), (10)
or

St + S, > In(we). (11)

For the Gaussian wave functions (Gaussian signals) de-
scribing the states without correlations of the position and
momentum, e.g., the ground state of the harmonic oscil-
lator

Y(z) = n VAem® 2 g(p) = a2 (12)
one has )
S =80 = 5 In(me). (13)
Consequently,
SO 4+ SO = In(re). (14)

The equality takes place for squeezed states with the wave
function

U(x) = (2mo,e) Ve o (15)
Thus, one has
1 1
Sy = 5 In(2meo,2), Sy = 5 In(2meoy? ), (16)
where 0,2 and 0,2 read
2
Op2 = /IQIQ/J(x)IQde* (/Ilt/f(x)IQd:v) ,
2
op = /p2|¢(p)l2dpf (/plw(p)Ide> , 1
and
1
Op20p2 = 1 (18)

For squeezed and correlated [5] states, the wave functions
have the Gaussian form, i.e.,

¥(z) = Nexp(—az® + bx),  a=ay+ias,

and

1 1

- 41-R2°
Here R is the correlation coefficient of the position and
momentum, i.e.,

(19)

0 520p2

3(ap +p4) — (@) (D)
/O 2 O'pz
and for squeezed but not correlated states R = 0.

The sum of entropies for the squeezed and correlated
states reads

R:

,IRI<1, (20)

Sy + Sp = In(me) + In > In(me). (21)

1
V1—R?
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For squeezed but not correlated states, the entropy S,
differs from S,,.
For multimode systems (multicomponent signals), the
entropy uncertainty relation reads
Sz + Sﬁ > Nln(ﬂe), (22)

where N is the number of degrees of freedom of the system
and

— - [ W@ P wl@) iz,
)

- [ P w1 b

The functions (%) and () are connected by the Fourier
transform

00 = em) V2 [e@ear e
For the Gaussian wave function corresponding to factor-
ized squeezed state of several modes,

Sz + Sﬁ = Nln(ﬂe). (25)

3 Symplectic tomography

There exists an invertable map of the density operator
(matrix) p onto the symplectic tomogram [25,26] which is
the probability-density of random quadrature X

W(X, j1,v) = Trp 6(X — g — vp).

Here p is the density operator. The parameters p and v
are real parameters and operators ¢ and p are quadrature
operators.

The map (26) has the inverse [17]

(26)

:—/ (X, u,v)exp[i (X — pg — vp)| dX dpdv.

(27)
For a pure state gy =| ¥){¢ |, the transform (26)
yields [27]
. 2
1 X
w(X, p,v) /w exp —y -y dy
T om |V|

(28)
The function w(X, u, v) (the state tomogram) is the prob-
ability density of the position X, i.e.,

U}(X,/J/,l/) 20

/me

Transformation (26) can be expressed in terms of the real
Wigner function [28]

and

)dX = 1. (29)

Wi(gp) = [p (q +2.q— E) e " du,

5 5 (30)
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where p(z,2’) is the density matrix in the position repre-
sentation, and for Tr p = 1 one has

d d,
/W ap) q P_1. (31)
The density matrix reads
1 / ) /
p(z,z') = %/W (x —; v ,p) @) qp. (32)

In terms of the tomogram, one has

1 . o
p(z, ") = e /w(Y,u,:ﬂ —&)e Y r@ 2 gy qy,

(33)
The tomographic-probability density has the homogeneity
property following from its definition (26) and the relation
for the Dirac delta-function

5(Ay) = W(S(y) (34)
The homogeneity property reads
1
wAX, Ay, Av) = Ww(X,,u,V). (35)
Also for the pure state, one has
w(X,1,0) = [ (X)[* (36)
and _
w(X,0,1) = [¥(X)[%, (37)
where (X)) is the wave function in the position represen-
tation and ¥ (X) is the wave function in the momentum
representation.

These properties are connected with the expression of
symplectic tomogram in terms of the Wigner function [25]

dq dp
o

w(X, p,v) /W ¢,p)0(X —pg—vp) ——.  (38)

The inverse transform reads

Wi(g,p) = % /w(X,m v)exp [i (X — pg —vp)] dX dpdv.

(39)
Since for the pure state,
dp 9
2L _ 4
[ Wt =) (10)
and J
q ~
[ Wzt = e (41)
relations (36) and (37) are easily obtained.
Tomogram (28) can be rewritten in the form
Lo
X = _(E
WX pwv) = 5o /w(y) exp [2 (Vy
2X ?
T EXQH dy| . (42)
v v
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For 4 = cost and v = sint, one has the optical tomo-
gram [29,30]

w(X,t) ‘/w exp[% cott (y* + X?)

2 (43)

2X ) ] dy
sint V2misint
On the other hand, this tomogram formally equals to

(X, 1)%,

where the wave function reads

w(X,t) = (44)

Y(X,t) = (cott (y* + X?)

el
2 y)] Yy dy, (45)

sint

being the fractional Fourier transform of the wave function
¥ (y). This wave function corresponds to the wave function
of a harmonic oscillator with 7 = m = w = 1 taken at the
time moment t provided the wave function at the initial
time moment ¢ = 0 equals to ¥(y).

For mixed state with density operator p written in the
form of the spectral decomposition,

b= e | ) (W |, (46)
K

where )\, are nonnegative eigenvalues and | ¥) are the
eigenvectors of the density operator, the optical tomogram
reads

w(X, p = cost,v =sint) = Z 27r|smt| Yr(y)

2X ’
sint

In equations (45) and (47), we use the identity of the ker-
nel of fractional Fourier transform to the Green function
of the Schrodinger evolution equation for the harmonic
oscillator [31].

Tomogram of a mixed state takes the form of convex
sum of tomograms of pure states | ¢), i.e.,

= Z)\kwk(X7Ma V)7
k

X exp [% (cott (y? + X?) - (47)

w(X, p,v) (48)

where wy (X, u, V) are given by equation (42) with

V() — Yr(y) = (| ¥r).

In view of equations (36) and (37), one has for mixed state

ZAHW

w(X,1,0) (49)
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and
w(X,0,1)

Z)\k|'¢k ;

where ¢, (X) is the complex wave function in the position
representation of the eigenstate | ) and i (X) is the
complex wave function in the momentum representation
of this state.

Thus, we pointed out that symplectic tomogram of a
quantum state can be interpreted as modulus squared of
the harmonic-oscillator’s wave function for pure state or
as convex sum of modulus squared of such functions for
mixed state.

Another possibility for analogous interpretation fol-
lows in view of considering the tomogram w(X,p,v)
within the framework of Fresnel-tomography approach
[32].

In fact, formula (28) with g = 1 can be rewritten in
the form

(50)

wr(X,v)=w(X,p=1,v)

i(X —y)? ’

1
= exp | ——2—
‘/ V2miv P [ 2v

The Fresnel tomogram wy (X,
tomogram by

X v
wg <_ ) _> = |,LL|'LU(X,,LL,I/).
nop

On the other hand, wg (X/u,v/p) can be considered as
the wave function of free particle at the time moment t = v
if the initial value of the wave function at the time moment
t =0 is equal to ¥(y).

Thus, the Fresnel tomogram for pure state can be in-
terpreted as modulus squared of the wave function of free
particle.

The Fresnel tomogram is the probability distribution
satisfying the normalization condition

My) dy . (1)

v) is related to the optical

(52)

/wp(X, v)dX = 1. (53)
For mixed state (46), the Fresnel tomogram reads
Xy :
r(X,v) A ex
(54)
and
(55)

0) = Z Ak ltn (X
k

4 Tomographic entropies

Since the symplectic tomogram has the standard proba-
bility distribution features, one can introduce entropy as-
sociated with the tomogram of quantum state [18] or of
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analytic signal [19]. Thus one has entropy as the function
of two real variables

S(p,v) = —/w(X,,u,V) Inw(X, u,v)dX. (56)

In view of the homogeneity and normalization conditions
for tomogram (35), (29) one has the additivity property

S, Av) = S(p,v) + 1n|A. (57)
For pure state | ¢), one obtains the entropies S, and S,
namely,

S(1,0) = S, (58)

and
S(0,1) = S,.

In view of inequality (10), one has the inequality for to-
mographic entropies

(59)

S(1,0) + .5(0,1) > In(me). (60)

For multimode system, the symplectic entropy reads

S(fi,7) = — /w()?, i, 7) mw(X, i, 7)dX. (61)
Since the symplectic entropy is related to entropies Sz and
Sy of the multimode-system state, one can use inequality
(22) to obtain the entropic uncertainty relation in the form
of inequality for symplectic entropies

S(1,0) + S(0,1) > N In(re), (62)

where i = 1 means i = (1,1,...,1) and 7 = 1 means
7=(1,1,...,1).

The Fresnel tomogram provides the Fresnel entropy of
the quantum state

Sr(v) = —/wF(X7 v) Inwp(X,v)dX. (63)

It can be readily seen that the Fresnel entropy Sg(v) can
be easily obtained from the symplectic entropy (56) choos-
ing u =1, i.e.,

S(1,v) = Sp(v).

This also means that

(64)

Sp(0) = S, (65)

For the optical tomogram (43), entropy is defined by the
formula

S(t) = —/w(X, t) lnw(X,t)dX. (66)
For the pure state, one has
S(0) =S, (67)
and
S(m/2) =8, (68)
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In view of the expression of tomogram in terms of wave
function (44) and (45), one has the entropic uncertainty
relation in the form

S(t)+ S(t+ w/2) > Inme. (69)
Since symplectic and optical tomograms are connected as
follows:

w(X, p=cost,v =sint) = w(X, ), (70)
the corresponding entropies are also connected
S(t) = S(p = cost,v =sint). (71)

For given symplectic entropy of any pure state S(u,v),
inequality (69) reads

S(cost,sint) + S(—sint,cost) > Ine. (72)
The optical tomogram w(zx,t) and symplectic tomogram
w(X, pu,v) connected by (70) can be related by another
formula

w(X, pv) =

1 X
w St 73
/M2+V2 ( //J’2+V2 ) ( )

This means that for given optical tomogram w(x,t) one
can reconstruct symplectic tomogram w(X, u,v). Insert-
ing equation (73) into basic equation defining the entropy
(56) yields the equality

1
S(t) = S(\/,LLQ +v2cost,\/ pu? + v? sint) ~3 In(p? 4 v2%).
(74)
For symplectic entropies (72), the entropic uncertainty re-
lation yields

S(\/,LLQ + v2cost, \/ u? + v? sint)

+S< — /2 + v2sint, \/p2 + 12 cost)
—In(p? 4 v?%) > Inme.

(75)

The extension of this inequality for multimode system
reads

S( u3 + vicosty, \/ p3 + V3 costa,. .., \/ui + 3 costn,
u? +visinty, /ud + visints, ..., /ﬁv—l—yf\,sint]v)
+S(f p3 4 visinty, —\/pu3 + v3sints,.. .,

—\/ A + Vi sinty,

w3 4 vicosty,\/ 3 + V3 costa, ... \/ 1 +V]2VCOStN>

N
_ Zm (1i +vi) > Nln(me), (76)
k=1

where entropy S(ji, ) is given by (61).
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Tomogram of the ground state of multimode isotropic
harmonic oscillator with unit masses and frequencies has

the form
ALy,
1, + v}

(77)

N
wo(f,ﬁ,ﬁ) ]_:[\/mexp<

Entropy associated with this tomogram reads

N
So (ﬁ, 17) = Inm+

N N
2 2

N &
2
+5 ;;:1 In (g +vi). (78)

This entropy does not depend on the parameter tj.

One can check that, if py — \/,ui + V,f costy and v —
v 1i + v sinty, in formula (78), relation (76) yields for Sy

the equality

SO(\/,u%—i—Vfcostl, \/ H3+V3 costa, ..., \/ pA + 13 cost,
\/,u% +1/fsint1, \/u% —|—V§ sintg,...,\/,u?\, +1/12VsintN)
+S<f \/msintl,fmsintg,...,

— /13 + Vi sinty,

\/ 1?2 +vicosty, /g + V3 costa, . ..

N
— Z In (ui + 1/,3)
k=1

,\/u?\,—f—yfvcost;v)

= N In(me). (79)

5 Entropic inequality for solitons

Entropy of the soliton solution to nonlinear equations
was discussed in [20]. In particular, the soliton solu-
tion to Gross-Pitaevskii equation [33] was considered in
the tomographic-probability representation to study Bose-
Einstein condensate (BEC) (see also [34,35]).

BEC soliton under consideration is given as the func-

tion
1
sech x ,
2L, l,

where the parameter [, describes the soliton width. Sym-
plectic tomogram of BEC soliton reads

P(x) =

(80)

Y
X h
'LUS( ):u’7 27T|I/| /\/_SGC ( )
X 2
xexp<;uy2 2 y) dy| , (81)
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where pp = rcost and v = rsint.
Since [ |¢(z)*dz = 1, tomogram (81) is nonnegative
normalized probability distribution of random position X.
The tomographic entropy of BEC soliton equals to

_/2vr|v| /FseCh(y)

. 2
H 2 ZX ) dy
v

xexp(Q y

{27r|v|
it o iX ’
exp | ooy~ dy dX. (82)

We introduce the function
F(r,t) = S(r,t) + S(r,t +7/2) —

According to the entropic uncertainty relation (75) this
function (we call it entropic uncertainty function) must
be nonnegative. Equation (74) and the additivity prop-
erty (57) mean that the entropic uncertainty function (83)
does not depend on parameter r.

Plots of function (83) for the Gaussian state and for
the soliton are presented below.

S(r,t) =

In7? —In(we).  (83)

(i) The normalized initial Gaussian profile is given by

exp(—y?/20?)
al/Ag12
where ¢ is the waist of Gaussian profile. The corre-
sponding tomogram calculated with the help of equa-
tion (28) with = rcost and v = rsint is given by

Faly) = (84)

o
T\/F(SiHQ t + 0% cos?t)
o2 X?

r2(sin? t 4+ o4 cos? t)

wg(r,t) =

X exp [ (85)

The symplectic Gaussian entropy is given as follows:

g

1
Sa(r,t)==—In |-
a(n?) " \/ 2 14 0og2
ri/m(sin®t + o cos? t)

2

(86)

The corresponding entropic uncertainty function Fg ()
in this case can be calculated explicitly

1—o4\?
Fc;(t) =In 1+ (Tﬂ) sin® 2t

Note that the positive definite function Fg(t) does not
depend on the radial variable r, i.e., it is the same
for both the symplectic and optical entropies and it
reduces to zero for ¢ = 1, whereas for ¢ # 1 it is
periodic with period 7/2 as can be seen from Figure 1.

(87)
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0 0.5 1 1.5 2 2.5 3
t (rad)

Fig. 1. Plot of function Fg(t) for two values of the Gaussian
waist 0 =2 and o = 4.

3

0.2 0.4 0.6 0.8 1 1.2 1.4
t (rad)

Fig. 2. Plot of entropic uncertainty function Fs(r,t) for three
values of the soliton-width parameter [, = 2,1, = 3, and [, = 4.

(ii) The initial profile of soliton is given by (80). Us-
ing the tomographic entropy (82), one can calculate
the entropic uncertainty function (83) for the soli-
ton numerically. The numerical result was obtained
by speeding up the calculation procedure employing
fast Fourier transform (FFT) method. Indeed, it was
shown (see [32]) that tomogram can be expressed as
convolution of the initial profile with a chirp function
(CF). Here the convolution was computed via FFT,
namely, the inverse Fourier transform of the product
of FFT of the initial profile and FFT of CF. Plots in
Figure 2 demonstrate the behaviour of entropic uncer-
tainty function Fg(t) for different values of the soliton-
width parameter [,. One can see that the upper bound
of this function depends on the soliton width.

Before concluding this section, we consider other examples
of quantum states with generic Gaussian Wigner function
and the corresponding tomogram

w(X, p,v) = ;exp (—L) , (83)
27T0'X)((,u,l/) QO'XX(Na V)

where

(89)

The parameters 04q, opp, and og, satisfy the uncertainty
relation

oxx (V) = p2ogy + Viop, + 2uro,,.

TqqOpp — ogp > 1/4. (90)
The state under consideration for
Ogq = Opp = =coth 5 Ogp =0 (91)

2 2’
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is the oscillator quantum thermal state with temperature
T=p3""1

For the state (88), the entropic uncertainty function
reads

1
In2+ 5 In [oqq cos® t + oy, sin t + 20, sint cost]

1
+§ In [aqq sint + Opp cos’t — 204p sint cos t} .

(92)
For squeezed thermal state we have
1 1
Ogq = §coth 5 Opp = 5coth 5 ogp =0, (93)

where A is squeezing parameter.

6 Conclusions

To conclude, we point out the main results of this paper.

Inequalities (69) and (75) being the generalizations of
known entropic inequalities for probability distributions
of conjugate position and momentum are obtained for en-
tropies associated with symplectic tomograms.

The new uncertainty relations obtained characterize
the behavior of quantum state in quantum mechanics as
well as the behavior of analytic signal in signal analysis.
The entropic uncertainty relation for tomographic entropy
are obtained also for multimode quantum state. The un-
certainty relation is given by formula (76). The entropy
under study as any Shannon entropy provides the infor-
mational characteristics of the signal.

The nonnegative entropic uncertainty function intro-
duced can be used to characterize the Shannon informa-
tion content of a signal, e.g., of optical signal.

The uncertainty relation for tomographic entropies is
a new additional property of nonlinear signals including
BEC solitons obeying the Gross-Pitaevskii equation. The
physical meaning of tomographic entropic uncertainty re-
lations will be deepen in a future work.
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